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1 Introduction

1.1 Background

Lately there has been a great deal of excitement generated over the use of the Linux oper-
ating system on various embedded devices. The reasons why Linux is a good idea for to-
day’s small devices are many and varied (too much so, in fact, to be dealt with here: see
http://www.linuxdevices.com for more information). But along with the many benefits of
Linux come some uncertainties. Performance, in particular, crops up frequently as a concern:
embedded devices have limited hardware resources and the software that they run must not
over-tax those resources.

1.2 The Problem

The concept of putting Linux in your PDA/phone/settop device appeared only recently and
no one really seems to know how well the OS will perform in such limited environs. While
you can read any number of reports of companies running Linux on their device these reports
rarely get specific about the hardware used and performance achieved. Similarly, there are
plenty of companies that will sell you tools to ”embed” Linux, but they don’t provide much in
the way of performance data either.

1.3 Motivation

We have undertaken this survey to provide you with objective analysis that can alleviate some
of the uncertainty surrounding putting Linux on an embedded device. We can’t, of course, tell
you precisely how it will run on your particular hardware and we won’t pretend to. Instead,
this survey looks at a Linux performance on a series of different generic ”devices” which we
refer to as profiles. Each profile matches a particular class of embedded device like mobile
phones, PDAs, or PVRs. We will tell you what hardware we used, how we tested it, and what
results we gathered in hopes that these figures can give you a ballpark idea of how Linux might
act on your hardware.

1.4 Scope

This document provides a vertical survey of Linux performance. It will give you the nitty-
gritty for each of our device profiles but it will not tell you how Linux matches up against
another operating system on a particular device. Comparisons like that are difficult to make
accurately. We seek only to provide you with information on what Linux can do.

1.5 Audience

We are assuming that if you are reading this, you are a technical manager who is considering
OS alternatives for a new device. You’ve heard of Linux but you don’t yet know everything
about it. You know something about operating systems in general, but you have yet to get
your hands dirty with this particular one. You also know something about embedded systems
and you have a sense of the unique challenges they present. You are curious about how Linux
can meet those challenges.

1.6 About Us

Blue Mug, Inc. is a small consulting company which specializes in embedded software ser-
vices. We have worked extensively with Linux and embedded systems at both the kernel and
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application levels.

2 Methodology

The first hurdle that we faced in measuring embedded Linux performance was determining
what to test and how to test it. The term ”embedded” describes a wide variety of devices and
”Linux” encompasses a large set of possible kernel configurations and patches (not to mention
system infrastructure and applications). We obviously could not cover all possibilities, but
we did want to address as many questions about Linux as possible. To that end we took the
following steps:

Define Profiles For the purposes of this study, we have identified two major device categories
(we call them profiles): the personal video recorder (PVR) and the web/mail appliance
(we give more specifics on each profile in its section, below). At some later date we hope
to publish data on two more profiles: the handheld device and the mobile phone. By
partitioning the spectrum of embedded devices in this way we hope give you information
on Linux that is at least somewhat relevant to whatever specific device you may be
working on.

Identify Profile-Specific Key Issues For each profile we selected what we think are the
most crucial performance issues, that is, the places where devices in that profile are most
heavily stressed and the places where Linux absolutely has to meet the usage demand.
Hopefully, these will match the urgent questions on your mind. However, we had to pick
and choose here as well and have chosen to concentrate on a few issues fully rather than
on many issues poorly.

Run Tests to Address Those Key Issues With these key issues in mind, we designed and
ran tests to determine just how well Linux performs. In each profile section below we
give you the pertinent data and as well as some discussion of the results’ implications.

Run Low Level, General Tests To cover the bases a bit better we also ran a standard suite
of more low level tests on every profile. These tests were not driven by any particular
issue but rather seek to provide more general data that may be helpful for answering
questions we weren’t able to address.

3 Web/Mail Set-Top Appliance Profile

The web/mail set-top appliance is a box which provides web and email access at some fixed
location. Examples include a box that plugs into your television, a kiosk in a public place, or
the ever popular web-toaster.
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Profile Summary:
Application memory usage Decent, could even be improved with framebuffer version of

GUI toolkit
Application switch time Not great when one app quits and the other launches; much

better when both apps are running and the switch is just a
window redraw

Web browsing performance Very good, though results were gathered with a non-
production browser that couldn’t test javascript

Mail sorting performance Good, though slower as the number of messages increases
Conclusion: Linux performs quite well on a web/mail device. The biggest concerns are
memory usage and switch time, but neither is insurmountable.

3.1 Hardware

Set-top appliances are non-portable devices, frequently with network connections. Their hard-
ware is similar to that of a low end desktop computer, but their functionality is more specific
than a desktop’s. To simulate the web/mail set-top we used an old desktop computer with the
following hardware:

• 166MHz Intel Pentium CPU

• 32MB of RAM

• 3Com 3c905 ethernet card

By comparison, the Philips Magnavox MAT976 has a 167Mhz R5231 processor (roughly
comparable to the 166Mhz Pentium) and 16MB of RAM. The memory difference between our
generic device and this one is significant until you consider that:

• This is a device out on the market right now; next year’s model will have bigger, better
hardware (in fact, National Semiconductor’s SP1SC10 Set-top box reference platform
diagram suggests 64MB of RAM).

• The software that runs on this device in only 16MB of RAM was no doubt carefully engi-
neered, integrated and optimized for that specific task over a significant amount of time.
Our version requires more memory but we were able to throw together a functionally
equivalent set of applications and an operating system in a matter of days.

3.2 Software

The web/mail appliance runs a stripped down Linux kernel (version 2.4.14) without mod-
ules but with network support, and a frame buffer console. It has a web application and an
email application, which use the same UI toolkit. We used a couple of open source appli-
cations for the web and mail clients called Dillo (http://dillo.sourceforge.net) and Stuphead
(http://stuphead.asplinux.ru), respectively. They are relatively small applications that use the
GTK+ UI toolkit (http://www.gtk.org/).

3.3 Key Issues

In the coming pages we look at what we have identified as the key issues for this profile:

• Application memory usage
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• Application switch time

• Web browsing performance

• Mail sorting performance

In section A.1.2 of the appendix (page 14), we provide more generalized technical data
about the performance of this profile.

3.3.1 Application Memory Usage

One of the first questions on anyone’s mind when it comes to embedded software is ”How
much memory will it use?”. Memory is a particularly scarce resource in embedded systems
and software running on them should not squander it. The web/mail appliance runs two
applications with graphical user interfaces (which require significant memory) and one of them
is a web browser (a type of application well known for its memory demands), therefore this
question is particularly relevant.

• Methodology We measured the memory used by both programs just after they started
up and just after they had completed a normal task (for the browser, loading www.amazon.com,
and for the mail client, opening the inbox, which contains 924 messages). We also mea-
sured the memory usage of the X window system, the underlying display infrastructure
currently required to run these programs. Finally, we looked at the amount of memory
available on the entire system when both applications were running.

For each program we started it, then ran ’ps axu’ to collect the data, then performed the
”normal task”, then ran ’ps axu’ again. These actions provided us with the application
and X memory usage data. Then we ran both applications simultaneously, had each
perform its ”normal task” then ran ’free’ to assess total memory usage.

• Results The web browser uses 2.8MB of memory after it starts up. After loading
www.amazon.com, it uses 4.2MB. The mail client uses 3.2MB initially and 4.1MB opening
the inbox. The X window system consistently uses 7.7MB in each case. The entire system,
after performing these tasks, uses 19.7MB, leaving 12.3MB available.

The memory figures listed above are resident memory (physical memory used). Memory
use for each application is as follows:

Dillo
Before After

Resident Memory 2852k 4312k
Virtual Memory 5208k 10,560k

Stuphead
Before After

Resident Memory 3308k 4172k
Virtual Memory 5532k 6312k

X Windowing System
Resident Memory 7840k
Virtual Memory 21,480k

Entire system memory usage data was derived from the ’free’ command’s output. The
amount of free memory includes the memory cache and kernel buffers (1444k available +
10,904 cached + 280k of kernel buffers = 12,628k free). The amount of memory used is
the total free subtracted from the total physical memory (32,768k total physical memory -
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12,628k free = 20,140k). Please note that while the space taken up by the memory cache
is available for use, using all of it and thus reducing the memory cache to nothing would
adversely affect the system’s performance.

These memory usage figures are decent, particularly if you don’t take the X Windows
memory usage into account. Our test apps are currently written with GTK+ GUIs that
require X Windows, but there are several efforts afoot to make GTK+ work on the Linux
frame buffer which would make X Windows unnecessary.

All frame buffer versions of GTK+ are based on version 2.0 of GTK+ whereas dillo and
stuphead were written for 1.2 so we were unable to determine just how much of a memory
advantage frame buffer GTK+ would confer on these programs. We did, however, look at how
frame buffer GTK+ performs on a much simpler app we wrote ourselves. You can read more
about this in section A.2.1 of the appendix (page 24).

3.3.2 Application Switch Time

The web/mail appliance does two things: browse the web and read/write email. We can
expect the user to switch between these two activities frequently; the time it takes to switch
applications should probably not be noticeable, and should definitely not be annoying.

• Methodology In its worst case, application switch time consists of the time it takes for
one program to stop completely and the other to start completely. To learn just how
long it takes for this to happen we added some code to our web browser and our mail
client to time initialization and shutdown time.

We linked dillo and stuphead to our timer library and timed from the beginning of main()
to the just before gtk main(). We also timed from the point at which the quit command
is received to the end of main(). We then ran each program ten times and reported
the average times. Each ”run” of dillo consisted of starting the application, loading
www.amazon.com from the location bar, and quitting the application. Each ”run” of
stuphead consisted of loading the application, opening the inbox, and quitting the appli-
cation.

• Results Switching from mail client to web browser takes about .6 seconds. Switching
from web browser to mail client takes about 2.0 seconds. The former is quite acceptable,
the latter a bit slow owing to the mail application’s long startup time.

Dillo’s average start time is .50s and its average exit time is .14s. Stuphead starts in
1.83s on average and averages .12s to shutdown. A mail client to web browser switch is
.62s (.12 + .50) and a web browser to mail client switch is 1.97s (.14 + 1.83).

Application switch time on our web/media appliance is reasonable but not great. However,
we chose to test the worst case for application switching, namely full shutdown of one appli-
cation and full startup of the other. Given that this device has 32MB of RAM, we can quite
easily run both applications at once so that an application switch becomes changing which
application’s window is visible, thus reducing the time to a fraction of what we listed above.
We didn’t test this type of application switch, but based on the user interface redrawing figures
in section A.2.2 (page 25), we estimate application switch would take no more than .5 seconds
and probably closer to .2 seconds.
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3.3.3 Web Browsing Performance

Web browsing performance is, naturally, a primary concern when designing a web/mail appli-
ance. Loading a web page is probably the most common action that the users of this device
will take. It is a serious problem if this extremely common action takes more time than the
user expects it to (which, we can safely assume, is the amount of time it takes on desktop or
laptop computer).

It is very hard to pin down all the factors in a real world test of web browsing because many
of them (internet conditions, remote web server performance, etc.) are beyond our control.
The numbers we provide here will give you ballpack estimates of web browsing performance
but they are still subject to the vagaries of the real-world internet. Also, Dillo, our test web
browser, does not support javascript yet so we were unable to test the impact of that technology
on browsing performance.

• Methodology We added some timer code to the web browser to let us know how long
each page load takes. Then we tested how long it took to load:

– an SSL protected shopping cart page at www.amazon.com (the cart contained five
items and the page was 35.6k in size)

– a very large archive of messages to a mailing list
(http://www.uwsg.indiana.edu/hypermail/linux/kernel/0108.2/index.html)

We added code to dillo such that the timer starts when the ”open url” request is received
and elapsed time is read each time any of the object handlers (html, plaintext, gif, jpeg,
png, or cache) finishes processing. We consider the last of these times after the page is
finished loading to be the time it took to load the page. We loaded each of our test pages
ten times, taking care that we were doing a full reload rather than just getting the page
from the browser cache (debug messages didn’t indicate that we were hitting the cache,
and the time it took to load the page did not decrease significantly over the ten loads).
The device is connected to the Internet via a DSL modem.

• Results The web browser loaded the www.amazon.com shopping cart in 2.1 seconds. It
loaded http://www.uwsg.indiana.edu/hypermail/linux/kernel/0108.2/index.html in 2.5
seconds.

That’s 2.086 seconds, on average, for www.amazon.com and 2.495 seconds, on average
for http://www.uwsg.indiana.edu/hypermail/linux/kernel/0108.2/index.html.

Two to two and a half seconds is quite good for browsing web pages of this complexity.
It is comparable to the performance that we’ve seen loading these pages on desktop machines
with much better hardware. It should thoroughly satisfy the user.

3.3.4 Mail Sorting Performance

A mail client doesn’t make the demands on the network connection that a web browser does,
so the most crucial performance issue a mail client presents has to do with how it handles
messages rather than how it sends or receives them. The most strenuous task a mail client
might be given regularly is to sort the messages in a large mail folder. Sorting is one of the
most basic and universal problems in computer science and how well a system solves it in a
particular instance can greatly impact performance.

7



• Methodology Our mail client offers sorting by message number, size, date, from, and
subject. We chose to sort by subject in our tests because it is the most difficult. We sorted
two different mail folders, one containing about 1,000 messages, the other containing
about 10,000. We added code to the mail client to tell us how long each sort took.

Initially we were going to test each sorting method (number, size, date, etc.) but to sim-
plify the process and the resulting data we chose the sort that consistently took the longest:
the sort by subject. We created our test mail folders from the archives of two technical
mailing lists, one containing 924 messages in a total of 3590k, the other containing 9827
messages in a total of 37,962k. We added a timer to stuphead’s sort handling function
that measures and reports the time elapsed in that function. We then ran the sort 10
times on each mail folder and averaged to get the values reported below.

• Results The mail client sorts almost 1,000 messages by subject in .7 seconds. It sorts
almost 10,000 messages by subject in 13.9 seconds.

924 messages were sorted in an average of .65 seconds, 9827 messages in an average of
13.93 seconds. Simple, repetitive actions like sorting large quantities of data rely heavily
on OS basics like file read bandwidth and memory bandwidth and latency. See section
A.1.2 of the appendix (page 14) for these and other basic details.

Sorting 1,000 messages in less than a second is a very reasonable result. Increasing the
number of messages tenfold leads to an significantly slower operation. However, users appre-
ciate that 10,000 messages is a lot and that sorting them will take a noticeable amount of
time.

4 PVR/Media Set-Top Appliance Profile

The Personal Video Recorder (PVR)/Media Set-Top Appliance profile contains non-portable
devices that handle large quantities of media effectively. Media input usually comes from a
television tuner, a cable box, a satellite dish, or the internet. The media is compressed, stored
on the device’s large hard drive, then, at a later date, uncompressed and played, probably on
a television screen and/or through speakers.

Profile Summary:
Application memory usage Very good, but it doesn’t take any GUI elements

into account
Disk performance Reasonable, though the results are fuzzy because

our method of simulating media streams was less
than perfect

Program listing search performance Impressive, although the impact of GUI drawing
was not taken into account

Conclusion: Linux can handle the demands of a PVR/Media device quite easily. The
only concern we have is that our disk performance tests do not perfectly simulate actual
usage.

4.1 Hardware

Set-top appliance hardware is similar to that of a low end desktop computer, but the device’s
functionality is more specific than a desktop’s. To simulate the PVR/media set-top we used
an old desktop computer with the following hardware:
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• 166MHz Intel Pentium CPU

• 16MB of RAM

• Matrox Millenium II video card

• Western Digital WDC AC34300L Hard Disk

• Hauppauge WinTV tuner card

The Philips line of digital video recorders (models hdr212, hdr312, and hdr612) (which can
be used the with Tivo service) typify this profile. They all come with PowerPC processors
and hard drives large enough to hold 20, 30, or 60 hours of MPEG-2 compressed video. It
is difficult to find published descriptions of the processor speed and memory quantities of
these devices, but the unofficial word on www.tivocommunity.com is that the processor runs
at 33Mhz and the device has 16MB of RAM. We also suspect that these digital video recorders
have specialized hardware to handle the MPEG-2 encoding and decoding that must be done
to store 60 hours of video on a reasonably sized disk.

There are discrepancies between our test device and what we consider to be typical devices
currently on the market. For one thing, our processor is significantly faster. However, Tivo just
announced the next generation of digital video recorders and rumor has it that the processors
in them are in the 200MHz range. Also, the processor on National Semiconductor’s SP1SC10
set-top reference platform is available in versions running as fast as 266MHz. Our profile is
ahead of what is currently on the market but it isn’t that far from what is around the corner.

Another discrepancy between our test device and those out on the market is that we
lack the specialized hardware dedicated to MPEG-2 encoding and decoding that we assume
digital video recorders use (National Semiconductor’s set-top reference platform, the SP1SC10,
includes an MPEG-2 decoder chip). As a result, we won’t be performing any MPEG-related
performance tests. If most devices handle encoding and decoding elsewhere, then it really isn’t
a Linux performance issue.

4.2 Software

Our test hardware for this profile runs version 2.4.14 of the Linux kernel with support for
SGI’s XFS filesystem (which was specifically written to handle large quantities of media) with
4096 byte blocks. It has modules for Ethernet, PPP support, sound support, video for Linux,
and a frame buffer console. To test the video capabilities of this system we used fbtv, a small
frame buffer based utility for displaying video. Because this device requires a fairly simple user
interface, and because we looked a GUI considerations in the previous profile we chose not to
study user interface impact here. For a description of a simple UI on similar hardware, please
see section A.2.1 of the appendix (page 24).

4.3 Key Issues

In the coming pages we look at what we have identified as the key issues for this profile:

• Application memory usage

• Disk performance

• Program listing search performance

In section A.1.3 of the appendix (page 19), we provide more generalized technical data
about the performance of this profile.
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4.3.1 Application Memory Usage

Memory usage is, as always, one of the primary questions when it comes to embedded devices.
Here we’ve looked at how much memory it takes to display video (this includes extra memory
that the system uses as well as the application that displays the media), how much memory
it takes to move data around in a manner consistent with simultaneously recording one media
stream (a television program, for instance) and viewing a previously recorded one, and how
much memory is left when all of this is happening.

• Methodology We determined the amount of memory necessary to record media and
play media simultaneously, as well as the memory necessary to display video. We also
measured how much memory is still available when all these things are happening simul-
taneously.

We started the test program we wrote to simulate simultaneous reads and writes (see the
Disk Performance key issue, below), then started fbtv, a program that displays the output
from the tv tuner card on the frame buffer. Finally, to collect the data, we ran ’ps axu’
and ’free’.

• Results The media simulation takes 1.2MB, and video display takes another 1.2MB.
The whole system has 4.9MB free when everything is running, meaning that 11.1MB is
used.

The memory figures listed above are resident memory (physical memory used). Memory
use for each task is as follows:

Media Simulation
Resident Memory 1272k
Virtual Memory 11,052k

Video Display
Resident Memory 1264k
Virtual Memory 18,436k

Entire system memory usage data was derived from the ’free’ command’s output. The
amount of free memory includes the memory cache and kernel buffers (1216k available
+ 3692k cached + 88k of kernel buffers = 4996k free). The amount of memory used is
the total free subtracted from the total physical memory (16,384k total physical memory
- 4996k free = 11,388k). Please note that while the space taken up by the memory cache
is available for use, using all of it and thus reducing the memory cache to nothing would
adversely affect the system’s performance. Also, a better simulation of a PVR device
might not utilize virtual memory at all since it creates a greater potential for lost data.

4.9MB of available space is quite good on a 16MB device that does serious media work.
The one caveat is that our test here involved very little in the way of user interface and a nice
GUI would take up a little bit more room. See section A.2.1 of the appendix (page 24 for an
idea of how much space a GUI would take.

4.3.2 Disk Performance

We did not test MPEG encoding and decoding because these are most frequently handled by
specialized hardware, but we did look at disk performance in prior to and following MPEG op-
erations. We simulated a particularly stressful case: the one in which the user is simultaneously
recording one stream of media and playing another, thus calling for lots of near-simultaneous
disk reads and writes.
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• Methodology For this test we wrote a program to read and write random data to and
from the disk in a manner consistent with media recording and playing. This program
measures the maximum rate at which the system can read and write, which we then
compare to the rate required for this application to determine if the former is sufficient.

Our program had two threads, one that read frame sized chunks (where framesize is deter-
mined by an assumed 6Mb/s bitrate and a 30 frames/second framerate) of random data
from a file in an XFS filesystem and one that wrote frame sized chunks; both continuing
until 60 seconds had passed on the system clock. Each thread kept track of how many
”frames” it processed and also kept running totals on the number of frames that took
longer than 33 milliseconds to be processed. We ran the program 10 times and averaged
the results.

• Results Our test system was able to record media at a rate of 43 frames per second and
play back media at 45 frames per second; rates that are well in excess of the 24, 25, and
30 frames per second frame rates employed in the most common video standards (film
runs at 24 frames per second, U.S. television at 30 frames per second).

The frame rates listed above are average rates; i.e., the number of frames processed in
60 seconds divided by 60. To ensure that we didn’t have a large number of very slowly
processed frames counterbalanced by just a few incredibly quick ones, we collected data
on the distribution of frame processing speeds:
Average Time Per Frame Distribution (Playback)
0-9ms (111 fps) 2657.8 frames
10-19ms (53 fps) 7.4 frames
20-29ms (34 fps) 14.7 frames
30-39ms (25 fps) 8.6 frames
40-49ms (20 fps) 0.7 frames
50-59ms (16 fps) 0.1 frames
60-69ms (14 fps) 0.4 frames
70-79ms (13 fps) 0.2 frames
80-89ms (11 fps) 0.1 frames
90-99ms (10 fps) 0.2 frames
100+ms (<10 fps) 0 frames
Average Time Per Frame Distribution (Record)

0-9ms (111 fps) 1853.5 frames
10-19ms (53 fps) 14.4 frames
20-29ms (34 fps) 40.6 frames
30-39ms (25 fps) 345.9 frames
40-49ms (20 fps) 123.5 frames
50-59ms (16 fps) 39.0 frames
60-69ms (14 fps) 32.9 frames
70-79ms (13 fps) 29.4 frames
80-89ms (11 fps) 35.7 frames
90-99ms (10 fps) 31.8 frames
100+ms (<10 fps) 33.3 frames

The table above groups frames by the amount of time it took them to be processed. This
processing time is expressed in a range like ”20-29ms”; in the playback part of the test
14.7 frames, on average, took between 20 and 29 milliseconds to be processed. The frame
rate for those frames is the inverse of time per frame. Thus, the slowest possible frame
rate for frames in that group is 34 frames per second (.029 seconds per frame, inverted).
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For playback we can see that, while there are some frames that took longer than the
required 29ms (which converts to 34 frames per second, safely above the standard 30fps)
they only account for less than 1% of the total number of frames and therefore are hardly
cause for concern, particularly since over two thirds of the frames were processed in under
10ms (which is a frame rate of at least 111 frames per second).

For recording, the data are not as encouraging: about a quarter of the frames processed
took too long to be processed, with a particularly significant group between 30 and 49ms,
a range which (at at least 20fps) is well under our target frame rate. We mustn’t un-
derestimate that 70% of the frames that get handled in at least 111 frames per second.
With some caching there should be plenty of extra time to deal with cached frames that
we weren’t able to handle when they initially came in.

Simple, repetitive actions like reading and writing large quantities of data rely heavily on
OS basics like file read bandwidth and memory bandwidth and latency. See section A.1.3
of the appendix (page 19) for these and other basic details.

These tests were performed with filesystem caching on. In an application which processes
large streams of data, caching does not help performance and will eventually hinder it
as the cache expands to use as much memory as it can and creates conflicts with other
memory users. A more accurate simulation of a PVR device probably wouldn’t have
caching turned on. However, the impact of caching on the read and write performance
figures above is probably relatively small since they process stream data linearly and derive
no performance benefits from cached data.

Our test system handled the complicated and demanding case of having to record and play
simultaneously quite gracefully.

4.3.3 Program Listing Search Performance

Apart from the media storage, these devices often store large databases of metadata, that is,
information about the media available and/or stored on the device. Searching these data can
place a noticeable load on the system. We’ve measured just how noticeable.

• Methodology

We created a large text file containing 10 days of 100 channels of 1 program every hour
with a title, time, date, description, and keyword list for every program. We searched this
primitive and inefficient ”database” with a basic UNIX command, looking for all entries
containing ”car” in the title, keywords or description, all the programs being shown at
8PM on the third day, and everything shown on channel 39 on the eighth day.

The ”database” (a file called ”program listing”) is a series of entries where each entry is
on its own line and has the format:
<program title>:<channel>:<hour>:<day>:<month>:<year>:<description>:<keywords>
The program title, description, and keywords are randomly generated text, the channel
ranges from 0 to 99, the hour from 0 to 23, the day from 0 to 9, and the month and year
are fixed at 4 and 2001. The three searches are grep commands: ’grep car program listing’,
’grep :[[:digit:]]*:20:2: program listing’, and ’grep :39:[[:digit:]]*:7: program listing’. We
used the time command to determine how long each search took. We ran each search 10
times and averaged the results.

• Results As it turns out the three searches take nearly the same amount of time. The
”car” search took 2.1 seconds, the ”8PM on the third” search took 1.8 seconds, and the
”channel 39 on the eighth” search took 1.7 seconds.
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Interestingly, most of the variation in search times appears to come from the number
of results displayed. The ”car” search, which comes up with 521 matches, only takes
1.8 seconds (rather than 2.1) if those results are not displayed (grep output is directed
to /dev/null). The ”8PM on the third” search gets 100 matches and takes 1.7 seconds
rather than 1.8 if the results are not displayed. The ”channel 39 on the eighth” search
gets only 24 matches and takes 1.7 seconds whether it displays them or not. So it appears
that devices can keep their search times relatively constant if they can keep their display
time from depending too much on the number of matches. It is also worth noting that
these data were collected in a text only environment and do not take into account the
extra time that GUI drawing requires. Results drawing time should stay roughly constant
however, since only the number of results that can fit on the screen will actually be drawn,
regardless of how many matches are found. For more information on GUI drawing times,
see section A.2.2 of the appendix (page 25).

About two seconds to do a primitive search through approximately 10MB of data should
be acceptable to the user. Better organized data could be searched more quickly but even at
these speeds (not quite instantaneous but not a long wait for a search) there should be no
complaints.

A Appendix: General Performance Data

A.1 Standard Measurements

Our device profiles have plenty of differences, but they also share similarities. We ran a
standard set of tests on every profile, not because we expect you to compare the number from
profile to profile but because there are certain, pertinent measurements to be taken on any
device running Linux. In this next section we’ll tell you where these numbers came from and
how they are useful. In the following sections we’ll give you the results for each profile.

A.1.1 Standard Measurements Descriptions

Kernel Measurements Basic numbers on the kernel and associated modules.

Kernel size The size of the kernel image; i.e. how much static storage the Linux kernel
itself requires. Some profiles will list this number for a compressed kernel image
only, others will list both compressed and uncompressed sizes.

Module size The sum total size of all possible modules that may or may not be loaded
into the kernel at any given point. This figure was determined by determining the
size of the contents of the /lib/modules/kernel name/kernel directory.

Kernel RAM usage How much dynamic memory the kernel requires to boot plus any
extra memory it initially allocates for its own uses. We measure kernel memory
usage only, not cache, not user space. This value was determined by examining
/proc/meminfo immediately after booting and subtracting the MemTotal value from
the total memory available.

Boot time How much time it takes from when the kernel is started to when the device
is ready for user input. This does not include any hardware startup time or the
time it takes to decompress the kernel. We have broken down this measurement
into three numbers: time elapsed before root partition is mounted, time elapsed
before the init process is started, time elapsed before login prompt. These values
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were collected by directing console output over a serial port and timing the arrival
of key strings on the other end.

Bandwidth and latency LMbench is a set of relatively simple, portable benchmarks for
Unix operating systems. We used several LMbench tests to gather data on bandwidth and
latency in various contexts. For each test we list below a description and the lmbench test
name in parentheses. For more information on LMbench, see http://www.bitmover.com/lmbench/.

File read bandwidth (bw file rd) Measure file reading and summing speeds. Data
will be presented as an average.

Pipe bandwidth (bw pipe) Measure maximum data rate through pipes. Data will
be presented as an average.

Socket bandwidth (bw unix) Measure data movement through Unix stream sockets.
Data will be presented as an average.

Named pipe latency (lat fifo) Measure time it takes to pass a token between pro-
cesses via a named pipe. Data will be presented as an average.

Context switch latency (lat ctx) Measure context switch time. Data will be graphed.

Memory read latency (lat mem rd) Measure the time it takes to do a single mem-
ory read. Data will be graphed.

Memory bandwidth (bw mem) Measure memory read, write, and copy speeds. Data
will be graphed.

Memory map bandwidth (bw mmap rd) Measure the speed of reading and sum-
ming a memory mapped file. Data will be graphed.

A.1.2 Web/Mail Set-Top Profile Standard Measurements

Kernel measurements
Kernel size 1668k uncompressed

615k compressed
Modules size 0k
Kernel RAM usage 2140k
Boot time 7.6s to root mount

8.3s to init
18.5s to login

Bandwidth and latency averages
File read b/w 280.74 MB/s
Pipe bandwidth 41.1767 MB/s
Socket bandwidth 30.9833 MB/s
Named pipe lat. 28.867933 usecs
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A.1.3 PVR/Media Set-Top Profile Standard Measurements

Kernel measurements
Kernel size 2975k uncompressed

935k compressed
Modules size 336k
Kernel RAM usage 2764k
Boot time 8.7s to root mount

9.3s to init
20.4s to login

Bandwidth and latency averages
File read b/w 263.9633 MB/s
Pipe bandwidth 41.5267 MB/s
Socket bandwidth 30.58 MB/s
Named pipe lat. 31.007467 usecs
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A.2 GTK+ Comparisons

When running the Web/Mail Profile tests, we tried out three different varieties of GTK+: the
standard flavor that runs on top of X Windowing System (thus incurring some serious memory
use), GtkFB, which runs without X on the frame buffer, and GTK+ DirectFB which also runs
on the frame buffer via the DirectFB library (http://www.directfb.org/). These data didn’t fit
well into any of the key issues, but they may be useful to those who are especially curious about
the various GUI options and the resources they require. It is also worth noting that GTK+
is not the only game in town: Qt/Embedded and PicoGUI are a couple of other worthwhile
toolkits that we might have studied further.

A.2.1 Memory Usage with Various Flavors of GTK+

To compare the memory usage of these different types of GTK+ we first ran a very simple
program (the Hello World example that comes with GTK+) which just creates a window with
a single button. We measured the memory usage of this program when compiled with each of
the different types of GTK+.

Plain GTK+
Resident Memory 5084k
Virtual Memory 8972k

GtkFB
Resident Memory 3344k
Virtual Memory 6556k

DirectFB
Resident Memory 5020k
Virtual Memory 16,224k

Gtkfb is clearly the big winner here, though it is, of course, still under development and
not nearly as stable as the original GTK+. Keep in mind that the hard memory requirement
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is the resident memory amount, though systems with very little free memory will experience
serious performance problems.

A.2.2 Application Speed with Various Flavors of GTK+

We wrote a small program with a slightly more complex UI to compare time performance (see
screenshot below). It gathers data in the following categories:

• Window Construction: Timer stops before screen is constructed.

• Screen Construction: Timer stops before screen is displayed.

• Screen Draw: Timer doesn’t start until after screen has been constructed and stops when
it has been fully drawn.

• Screen Redraw: Redraw happens after a full exposure.

• Window Destruction.

• Input Event: Measures from injection of event to invocation of handler for that event.

• Unhandled Input Event: Measures from injection of event to return to the UI event loop.

We ran our test application ten times in each case. we report the results of the first run
and the average of rest separately because they are significantly different in some cases.

GTK+
first run average

Window construction 426412 usecs 244147.11 usecs
Screen construction 4470473 usecs 796923.44 usecs
Screen draw 2850939 usecs 324545.44 usecs
Screen redraw 159176 usecs 158092.33 usecs
Screen destruction 216951 usecs 130221.44 usecs
Input event 100 usecs 101.56 usecs
Unhandled input event 163 usecs 189.33 usecs
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GTKfb
first run average

Window construction 1448602 usecs 217065 usecs
Screen construction 422006 usecs 229435.22 usecs
Screen draw 1991443 usecs 1967177.33 usecs
Screen redraw 583035 usecs 584324.11 usecs
Screen destruction 117799 usecs 117797.56 usecs
Input event 98 usecs 151.67 usecs
Unhandled input event 158 usecs 161 usecs

GTK+ DirectFB
first run average

Window construction 1457777 usecs 264295.11 usecs
Screen construction 496140 usecs 257655.44 usecs
Screen draw 1163372 usecs 1100969.89 usecs
Screen redraw 183907 usecs 184803.89 usecs
Screen destruction 112138 usecs 112072.44 usecs
Input event 90 usecs 92.56 usecs
Unhandled input event 142 usecs 142.78usecs

GTKfb leads the pack in average screen and window construction, though the first window
it draws takes a ridiculously long time (this is true of DirectFB as well and therefore could
be a frame buffer related issue). GTK+ is the fastest screen drawer and redrawer, though its
first screen draw isn’t very fast relative to the frame buffer versions. The frame buffer versions
are consistently better than GTK+ at window destruction. Finally, DirectFB excels at zippy
event handling.
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