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• User Interface
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About Blue Mug, Inc.

Blue Mug creates software for mobile devices

• Located in Berkeley
• About 18 employees, 90% engineers
• Founded in 1999 (from Geoworks’ Mobile OS

Group)
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About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Linux is appealing for embedded solutions

• Business: Free (as in beer), actively developed
technology

• Developer: sane platform
• Users: stable, fast
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About Blue Mug, Inc.

Blue Mug creates software for mobile devices

But we’re not a Linux-only company

• GEOS-SC OS
• Palm OS
• Symbian OS
• µITRON RTOS
• J2ME, BREW
• Microprocessor projects
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The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen
• Palm-like battery life ( 22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)
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Project Example Mockup
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Hardware Selection

Which embeddable system-on-a-chip to use?
Considerations:

• Performance
• Price
• Power consumption
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Hardware Selection

Which embeddable system-on-a-chip to use?

StrongARM, PPC use too much power, cost too much

MIPS, SH are struggling
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Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board

• 75Mhz ARM7
• 16Mb Flash, 16Mb RAM
• Low-power (170mw)
• Successor to PS7110 used in Psion Series 5, for

which there is a Linux port.
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System Overview

• Two 8Mb banks of Flash
• Kernel in one bank
• Root file system in other bank (mounted

read-only)
• /tmp in RAM
• User files, add-on apps in RAM
• No swap!
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Size Issues

• 8Mb Flash for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed trade-off
• Tricky; dynamic linking, c library...

• For this project, we had to be extremely
space-conscious
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RAM Issues

• 16Mb RAM
• What to when out of memory?

• Difficult on desktop. Linux kills processes based
on CPU usage, run time, and access to
privileged I/O resources.

• Easier on embedded systems
• Known set of processes (eg. BeOS’ “kill the

browser” approach)
• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations
• Never ran out of RAM in testing
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Low-Level: XIP

• Why not XIP (eXecute In Place)?
• Opportunistic way to use less RAM
• If page does not contain relocation address, run

directly from Flash or disk
• Pages cannot be compressed
• Flash is slower than RAM, so apps may run

slower
• XIP reduces RAM usage, but not Flash
• At time, Flash was expensive and hard to get and

RAM was relatively cheap, we decided against XIP
in favor of a compressed flash file system
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Low-Level: Memory Mapping

EP7211 memory is non-contiguous
• Use kernel macros to map between actual and

linear presentation of memory
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Low-Level: Keyboard Driver

The EP7211 eval board has annoying keyboard

→ No hardware interrupt!

• Every 5 jiffies, generate interrupt
• Scan keyboard
• If key press, queue task to process keys

• Can’t process keys in timer process because it
may take too long and cause the serial to drop
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Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Start with GLibC, move to sglibc.
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User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Good example: Palm UI fits small-screen,
stylus-central organizer

Bad example: WinCE UI presents entire desktop
interface on small screen
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User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility means urgency
• Objective is to get job done
• Technology by itself isn’t a feature
• Status notification only for things that matter
• A too-rich feature set makes the device feels

unpredictable

Building an Embedded Linux Prototype – p. 15/24



User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Limit user options
• Borrow desktop elements as needed
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User Interface: Our Design

(This is a conceptual mockup)
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User Interface: Our Design

Use desktop GUI widgets with softkey control
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User Interface: Our Design

Place options in menu. Hide menu to save screen
space, but indicate existence.
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User Interface: Our Design

Menu bar includes time and battery.
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User Interface: Our Design

Menu is modal and takes control of softkey bar. Other
widgets are inactive.
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User Interface: Other Elements

Other misc. design elements...

• The difference between softkeys and buttons
• Softkeys can be stand-alone
• Buttons affects pane

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy rectangle”
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Criteria:

• Completeness
• Size
• Multiple apps can access framebuffer
• Language (C, C++)
• License
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

• Gtk+
• Qt/e
• OpenGUI
• MiniGUI
• PicoGUI
• Microwindows
• ...
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Qt
• KDE Desktop
• Developed by TrollTech
• C++ framework
• Qt/E is reduced, runs on framebuffer
• QTopia app infrastructure
• Difficult to compile (circa Q1 2001)
• Dual-license
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Gtk+
• GNOME Desktop
• Open source project
• C
• Developed on X; also Gtk+/fb
• LGPL
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

X Windows! Eek!
• Client-server windowing system
• Network-transparent
• 20 years old
• Widely regarded as bloated and archaic
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

We like X

• X is stable
• TinyX is, well, a tiny version of X
• Network-transparency is helpful

• Quick UI analysis: run apps from desktop on
device
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User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

Modified AEWM window manager

• Vertical title bars
• Inter-app communication
• Application-level awareness of modal dialogs
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User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow
• Font management

Changes in-place, not sub-classed

2.9Mb footprint for Gtk+/X; this could be reduced to
2.4Mb.
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User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window
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User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

GtkStyle is fairly big, so this is expensive. And the
developer has to know the specific font name.
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User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

We wrote API for requesting fonts by attribute relative
to the base font.
gtk widget set font bold (widget, TRUE);
gtk widget set font enlarge (widget, 1);

We added a GdkFont * font to GtkWidget. Use
widget->font if possible, otherwise use
widget->style->font
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User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

You can request font changes even before Gtk+ knows
the base font.
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User Interface: Performance

• Slow launch times
• 2.4 seconds for most complicated app
• Memory bandwidth bottleneck
• For now, display eye candy when app is

launched
• In future, predictively launch applications
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User Interface: Performance

• Slow launch times
• Loading pixmaps

• XPM format is bulky
• Gtk+ 1.2’s XPM parser is terrible
• Hack parser
• Hand post-rendered pixmaps to X server
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User Interface: Performance

• Slow launch times
• Loading pixmaps
• Floating point calculations

• Floating point calculations are expensive on
ARM

• Gtk+ uses floating points for widget positioning
• Integer math positioning gives a 3-12%

speedup
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Conclusion

• Client was happy with fully-functional prototype
• We’re happy with our choice of Gtk+/X
• OSS made this project possible
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