
Building an Embedded Linux Prototype

Devin Carraway, Chuck Groom

Blue Mug, Inc.

Contents copyright 2002 Blue Mug, Inc.

All rights reserved

Building an Embedded Linux Prototype – p. 1/24

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p. 2/24

About Blue Mug, Inc.

Building an Embedded Linux Prototype – p. 3/24

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Building an Embedded Linux Prototype – p. 3/24

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Building an Embedded Linux Prototype – p. 3/24

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

• Located in Berkeley
• About 18 employees, 90% engineers
• Founded in 1999 (from Geoworks’ Mobile OS

Group)

Building an Embedded Linux Prototype – p. 3/24

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Linux is appealing for embedded solutions

• Business: Free (as in beer), actively developed
technology

• Developer: sane platform
• Users: stable, fast

Building an Embedded Linux Prototype – p. 3/24

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

But we’re not a Linux-only company

• GEOS-SC OS
• Palm OS
• Symbian OS
• µITRON RTOS
• J2ME, BREW
• Microprocessor projects

Building an Embedded Linux Prototype – p. 3/24

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen
• Palm-like battery life (22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p. 4/24

Project Example Mockup

Building an Embedded Linux Prototype – p. 5/24

Hardware Selection

Which embeddable system-on-a-chip to use?
Considerations:

• Performance
• Price
• Power consumption

Building an Embedded Linux Prototype – p. 6/24

Hardware Selection

Which embeddable system-on-a-chip to use?

StrongARM, PPC use too much power, cost too much

MIPS, SH are struggling

Building an Embedded Linux Prototype – p. 6/24

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board

• 75Mhz ARM7
• 16Mb Flash, 16Mb RAM
• Low-power (170mw)
• Successor to PS7110 used in Psion Series 5, for

which there is a Linux port.

Building an Embedded Linux Prototype – p. 6/24

System Overview

• Two 8Mb banks of Flash
• Kernel in one bank
• Root file system in other bank (mounted

read-only)
• /tmp in RAM
• User files, add-on apps in RAM
• No swap!

Building an Embedded Linux Prototype – p. 7/24

Size Issues

• 8Mb Flash for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed trade-off
• Tricky; dynamic linking, c library...

• For this project, we had to be extremely
space-conscious

Building an Embedded Linux Prototype – p. 8/24

RAM Issues

• 16Mb RAM
• What to when out of memory?

• Difficult on desktop. Linux kills processes based
on CPU usage, run time, and access to
privileged I/O resources.

• Easier on embedded systems
• Known set of processes (eg. BeOS’ “kill the

browser” approach)
• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations
• Never ran out of RAM in testing

Building an Embedded Linux Prototype – p. 9/24

Low-Level: XIP

• Why not XIP (eXecute In Place)?
• Opportunistic way to use less RAM
• If page does not contain relocation address, run

directly from Flash or disk
• Pages cannot be compressed
• Flash is slower than RAM, so apps may run

slower
• XIP reduces RAM usage, but not Flash
• At time, Flash was expensive and hard to get and

RAM was relatively cheap, we decided against XIP
in favor of a compressed flash file system

Building an Embedded Linux Prototype – p. 10/24

Low-Level: Memory Mapping

EP7211 memory is non-contiguous
• Use kernel macros to map between actual and

linear presentation of memory

Building an Embedded Linux Prototype – p. 11/24

Low-Level: Keyboard Driver

The EP7211 eval board has annoying keyboard

→ No hardware interrupt!

• Every 5 jiffies, generate interrupt
• Scan keyboard
• If key press, queue task to process keys

• Can’t process keys in timer process because it
may take too long and cause the serial to drop

Building an Embedded Linux Prototype – p. 12/24

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Start with GLibC, move to sglibc.

Building an Embedded Linux Prototype – p. 13/24

User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Good example: Palm UI fits small-screen,
stylus-central organizer

Bad example: WinCE UI presents entire desktop
interface on small screen

Building an Embedded Linux Prototype – p. 14/24

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility means urgency
• Objective is to get job done
• Technology by itself isn’t a feature
• Status notification only for things that matter
• A too-rich feature set makes the device feels

unpredictable

Building an Embedded Linux Prototype – p. 15/24

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Limit user options
• Borrow desktop elements as needed

Building an Embedded Linux Prototype – p. 16/24

User Interface: Our Design

(This is a conceptual mockup)

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Place options in menu. Hide menu to save screen
space, but indicate existence.

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Menu bar includes time and battery.

Building an Embedded Linux Prototype – p. 17/24

User Interface: Our Design

Menu is modal and takes control of softkey bar. Other
widgets are inactive.

Building an Embedded Linux Prototype – p. 17/24

User Interface: Other Elements

Other misc. design elements...

• The difference between softkeys and buttons
• Softkeys can be stand-alone
• Buttons affects pane

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy rectangle”

Building an Embedded Linux Prototype – p. 18/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Criteria:

• Completeness
• Size
• Multiple apps can access framebuffer
• Language (C, C++)
• License

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

• Gtk+
• Qt/e
• OpenGUI
• MiniGUI
• PicoGUI
• Microwindows
• ...

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Qt
• KDE Desktop
• Developed by TrollTech
• C++ framework
• Qt/E is reduced, runs on framebuffer
• QTopia app infrastructure
• Difficult to compile (circa Q1 2001)
• Dual-license

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Gtk+
• GNOME Desktop
• Open source project
• C
• Developed on X; also Gtk+/fb
• LGPL

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

X Windows! Eek!
• Client-server windowing system
• Network-transparent
• 20 years old
• Widely regarded as bloated and archaic

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

We like X

• X is stable
• TinyX is, well, a tiny version of X
• Network-transparency is helpful

• Quick UI analysis: run apps from desktop on
device

Building an Embedded Linux Prototype – p. 19/24

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI

Decided on Gtk+ running on X

Modified AEWM window manager

• Vertical title bars
• Inter-app communication
• Application-level awareness of modal dialogs

Building an Embedded Linux Prototype – p. 19/24

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow
• Font management

Changes in-place, not sub-classed

2.9Mb footprint for Gtk+/X; this could be reduced to
2.4Mb.

Building an Embedded Linux Prototype – p. 20/24

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p. 21/24

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p. 21/24

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p. 21/24

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p. 21/24

User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

GtkStyle is fairly big, so this is expensive. And the
developer has to know the specific font name.

Building an Embedded Linux Prototype – p. 22/24

User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

We wrote API for requesting fonts by attribute relative
to the base font.
gtk widget set font bold (widget, TRUE);
gtk widget set font enlarge (widget, 1);

We added a GdkFont * font to GtkWidget. Use
widget->font if possible, otherwise use
widget->style->font

Building an Embedded Linux Prototype – p. 22/24

User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

You can request font changes even before Gtk+ knows
the base font.

Building an Embedded Linux Prototype – p. 22/24

User Interface: Performance

• Slow launch times
• 2.4 seconds for most complicated app
• Memory bandwidth bottleneck
• For now, display eye candy when app is

launched
• In future, predictively launch applications

Building an Embedded Linux Prototype – p. 23/24

User Interface: Performance

• Slow launch times
• Loading pixmaps

• XPM format is bulky
• Gtk+ 1.2’s XPM parser is terrible
• Hack parser
• Hand post-rendered pixmaps to X server

Building an Embedded Linux Prototype – p. 23/24

User Interface: Performance

• Slow launch times
• Loading pixmaps
• Floating point calculations

• Floating point calculations are expensive on
ARM

• Gtk+ uses floating points for widget positioning
• Integer math positioning gives a 3-12%

speedup

Building an Embedded Linux Prototype – p. 23/24

Conclusion

• Client was happy with fully-functional prototype
• We’re happy with our choice of Gtk+/X
• OSS made this project possible

Building an Embedded Linux Prototype – p. 24/24

	Overview
	About Blue Mug, Inc.
	About Blue Mug, Inc.
	About Blue Mug, Inc.
	About Blue Mug, Inc.
	About Blue Mug, Inc.
	About Blue Mug, Inc.

	The Project
	Project Example Mockup
	Hardware Selection
	Hardware Selection
	Hardware Selection

	System Overview
	Size Issues
	RAM Issues
	Low-Level: XIP
	Low-Level: Memory Mapping
	Low-Level: Keyboard Driver
	Low-Level: Which C Library?
	User Interface: Design Principles
	User Interface: User Goals
	User Interface: Givens
	User Interface: Our Design
	User Interface: Our Design
	User Interface: Our Design
	User Interface: Our Design
	User Interface: Our Design
	User Interface: Our Design
	User Interface: Our Design

	User Interface: Other Elements
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs
	User Interface: Embeddable Linux GUIs

	User Interface: Modifying Gtk+
	User Interface: GtkWindow
	User Interface: GtkWindow
	User Interface: GtkWindow
	User Interface: GtkWindow

	User Interface: Font
	User Interface: Font
	User Interface: Font

	User Interface: Performance
	User Interface: Performance
	User Interface: Performance

	Conclusion

